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Abstract

The mechanism of phase modulation method for reducing the vibration amplitude of vibrating systems
accelerating or decelerating through its resonance is presented. The method is theoretically used to rotor
and one degree of freedom oscillator models with numerical simulation; numerical results show that the
maximum amplitude can be reduced by about 15–20% with phase modulation in comparison with the
constantly accelerating case. Possible implementation of the method was introduced. Experiments with a
cantilever sheet subjected pulses excitation were conducted to confirm the method; experimental results
show that the lateral vibration amplitude of the cantilever at the passage of its first resonance can be
reduced about 18% with phase modulation method.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

During run-up or run-down, machines are subject to oscillating forces of increasing or
decreasing frequency. If resonances have to be passed, large vibration amplitude at resonance is
one of the most serious concerns. Especially for rotating machines, large lateral vibration
amplitude may cause tip-rubs of rotor and guard as well as increased bearing reactions [1–3], and
even some of the situations can be catastrophic. In order to avoid the damage due to rubbing,
nominal tip clearances are specified well in excess of those necessities for steady-state supercritical
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

M mass of the oscillator (kg)
C damping constant (N s/m)
k1, k2 stiffness constants (N/m)
l1, l2 un-stretched length of springs (m)
m mass of the rotor (kg)
e eccentric distance of the rotor (m)
P potential energy of springs (J)
F vector of excitement force (N)
x, y vibration displacements (m)
x̄ ȳ dimensionless vibration displacements
j phase of the rotor (rad)
jðtÞ dimensionless phase of the rotor or

oscillating force
y angle between normal and resultant

inertia force (rad)
yðtÞ dimensionless angle between normal

and resultant inertia force
d dimensionless damping
on the nth natural frequency (1/s)
P̄ dimensionless potential of the springs

F magnitude of dimensionless excitement
force

k ratio of the masses
t dimensionless time
c phase of the excitement force (rad)
cðtÞ dimensionless phase of the excitement

force
g1, g2 dimensionless lengths of un-stretched

springs
Z ratio of stiffness
T dimensionless kinetic energy of the

oscillator
r phase of dimensionless vibration velo-

city
V dimensionless total vibration energy
b� phase difference between the vibration

velocity and excitement force
Ac, Ad dimensionless rate of increase/decrease

the excitement frequency
� constant
fr, fa retreating and advancing point
am maximum amplitude at resonance
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operation. This degrades the turbo-machine’s aerodynamic performance. In particular, large
clearances create low efficiencies for both turbines and compressors.
In the case of non-stationary process there is, in general, an interaction between the oscillating

system and its driving mechanism. While approaching a resonance, the driving mechanism pumps
energy into the oscillation, namely, the oscillating forces do positive work; whereas after the
passage of the resonance, a part of the vibration energy flows back into the driving mechanism or
the oscillating forces do negative work. These imply that the energy transmission between the
oscillating system and driving mechanism depends on the phase relations between the response
and excitation. Since the non-stationary response cannot be analytically expressed even for linear
oscillator subjected to oscillating force with linear increased frequency. Therefore, the effects of
phases on the vibration energy or amplitude are not obvious and may also be neglected. Markert
and Seidler [4] gave an exact analytical estimate of the maximum amplitude and resonant
frequency as well as the phase at resonance. The history of amplitude and phase is also important
in understanding the mechanism of the vibration of a system passing through resonance and
finding the methods to reduce the vibration amplitude. In industry practices, the general method
to avoid large amplitude resonance at critical speeds is to take as large acceleration as possible to
drive the system passing through the critical speed [5]. Indeed this measure is to ensure the phases
of oscillating system and driving mechanism keeping as fewer synchronic cycles as possible. It
takes the advantage of phase relations. On the other hand, this method may be limited by the
allowable maximum acceleration that depends on power of driving mechanism. Consequently, the
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following question was raised: for limited acceleration or rate of increasing frequency, can the
maximum vibration amplitude be further reduced? Millsaps and Reed [6] at first suggested
an acceleration scheduling method based on the amplitude–frequency characteristics of different
accelerations: firstly took a larger acceleration to accelerate the rotor to an adequate state,
then changed the acceleration to a smaller one to keep on accelerating the rotor, and expected
to reduce the maximum amplitude. Although they did not pay attention to the phase–frequency
characteristics: the amplitude will be increased in any case if switch accelerations at the phase
of amplitude increase. However, they established the way of reducing the vibration amplitude
by alternating acceleration. Based on their works, Wang et al. [7] proposed a way of modulating
the phase: let the excitement frequency go through an increase–decrease–increase procedure
to modulate the phase relations of excitement and response and to reduce the vibration ampli-
tude. In other words, adjust the history of phases to reduce the energy pumped to oscillating
system. In this work, the mechanism of phase modulation was explained and the method
was generalized to common vibrating system other than rotor system. An experimental
confirmation was conducted. In the following section, the mechanism of the phase modulation
method was introduced. In Section 3, the relations between the vibration amplitude and the phase
difference of excitation and response was analyzed. In Section 4, an empirical way of
implementing the method was presented. In Section 5, phase modulations of run-up and run-
down cases were shown with numerical simulation. In Section 6, an experimental confirmation
was implemented.
2. The effect of the excitement phase on the vibration amplitude

For constant excitement frequency, both the vibration amplitude and the phase difference
between excitation and response are constant; while they are changed with varied excitement
frequencies; and the increase/decrease of vibration amplitude closely relates to the phase
difference and/or the history of excitement frequency.
2.1. Numerical results

We use the following model to numerically show the relations between vibration amplitude and
phase difference.
The two degrees of freedom damped spring-mass oscillator in Fig. 1 has mass M and damping

constant c; its two springs have stiffness constants k1 and k2, as well as un-stretched lengths l1 and
l2, respectively. The oscillator is subjected to an inertial force caused by a rotor with mass m and
eccentric distance e, which rotates about point O with phase j.
Its equations of motion are

ðM þmÞ €xþ c _xþ
qP

qx
¼ emð _j2 cosjþ €j sinjÞ,

ðM þmÞ €yþ c _yþ
qP

qy
¼ emð _j2 sinj� €j cosjÞ, ð1Þ
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Fig. 1. Two degrees of freedom vibration system model with rotary component.
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Fig. 2. Phases of excitement force and vibration velocity for (A) increased amplitude and (B) decreased amplitude.
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where the dot denotes differentiation with respect to time t, P is the potential energy of springs

P ¼
k1

2
x2 þ 2l1xþ y2 � 2l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ l1Þ

2
þ y2

q� �

þ
k2

2
x2 þ 2l2yþ x2 � 2l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyþ l2Þ

2
þ x2

q� �
.

To show the relations between the phase difference and the vibration amplitude, Eq. (1) is
numerically integrated with constant angular acceleration €jðtÞ. Two segments of displacement
curves corresponding to increased and decreased amplitudes are shown in Fig. 2(A) and (B),
respectively, where arrows represent the direction of inertial force.
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In Fig. 2, continuous curves represent vibration displacements, arrows started from curve show
the direction of the excitement force F at that moment. Here, F is the resultant inertia force caused
by the rotor. Fig. 2(A) shows increased vibration amplitude, where the phase angle between the
vibration velocity v (the tangent direction of the displacement curve) and the force is less than p=2;
therefore, one has F � dr ¼ F � v dt40, or the driving mechanism pumps energy into the oscillation.
Since the damper always dissipates energy, the vibration energy or amplitude can be increased
only at such phase. When the angle is greater than p=2 shown as Fig. 2(B), the vibration
amplitude will definitely decrease, at such phase the vibration energy flows back into the driving
mechanism except the energy dissipated by damping. Here, we call this phase as ‘amplitude
increased/decreased phase’, accordingly it is lesser/greater than p=2, respectively.

2.2. Analytical result

To get analytical results, using y, the angle between normal and resultant inertia force, we
introduced the following transformations:

€jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
€j2 þ _j4

q ¼ sin y;
_j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
€j2 þ _j4

q ¼ cos y. (2)

By means of above transformations Eq. (1) can be rewritten as

ðM þmÞ €xþ c _xþ
qP

qx
¼ em

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_j4 þ €j2

q
cosðj� yÞ,

ðM þmÞ €yþ c _yþ
qP

qy
¼ em

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_j4 þ €j2

q
sinðj� yÞ, ð3Þ

where j� y ¼ c represents the phase angle of the excitement (inertia) force shown as Fig. 1.
The dimensionless form of Eq. (3) is

x̄00 þ 2dx̄0 þ
qP̄

qx̄
¼ F coscðtÞ,

ȳ00 þ 2dȳ0 þ
qP̄

qȳ
¼ F sincðtÞ, ð4Þ

where x̄ ¼ x=e, ȳ ¼ y=e, 2d ¼ c=ðM þmÞo1, o2
1 ¼ k1=ðM þmÞ, P̄ ¼ P=k1e

2, F ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j002 þ j04

p
,

k ¼ mðmþMÞ, cðtÞ ¼ jðtÞ � yðtÞ and t ¼ o1t. The prime denotes differentiation with respect to
the non-dimensional time t.
The dimensionless potential is

P̄ ¼
P

k1e2

¼
1

2
x̄2 þ 2g1x̄þ ȳ2 � 2g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx̄þ g1Þ

2
þ ȳ2

q� �

þ
Z
2

x̄2 þ 2g2ȳþ x̄2 � 2g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðȳþ g2Þ

2
þ x̄2

q� �
,

where l1=e ¼ g1, l2=e ¼ g2 and k2=k1 ¼ Z.
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The vibration energy of the rotor is

V ¼ P̄þ
1

2
ðx̄0

2
þ ȳ0

2
Þ

and its derivative with respect to t is

V 0 ¼
qP̄

qx̄
þ x̄00

� �
x̄0 þ

qP̄

qȳ
þ ȳ00

� �
ȳ. (5)

Using Eq. (4), Eq. (5) can be written as

V 0 ¼ x̄0ðF cos cðtÞ � 2dx̄0Þ þ ȳ0ðF sin cðtÞ � 2dȳ0Þ. (6)

By virtue of the dimensionless kinetic energy T ¼ 1
2
ðx02 þ y02Þ, we express vibration velocities as

x̄0 ¼
ffiffiffiffiffiffiffi
2T
p

cos r; ȳ0 ¼
ffiffiffiffiffiffiffi
2T
p

sinr, (7)

where r gives the phase of vibration velocity and substitution of Eq. (7) into Eq. (6) yields

V̄
0
¼

ffiffiffiffiffiffiffi
2T
p

F cosðr� cðtÞÞ � 2d
ffiffiffiffiffiffiffi
2T
ph i

, (8)

where r� cðtÞ ¼ b� expresses the phase difference between the vibration velocity (response) and
the excitement force (excitation). By Eq. (8) it can be concluded that the increase/decrease of
vibration energy depends on phase difference b�: the vibration energy can be increased only if
cosðr� cðtÞÞ40, namely, the phase difference satisfies �p=2ob�op=2 (or modulo 2p), otherwise
the vibration energy will be decreased. This conclusion coincides with the numerical results in
Section 2.
3. The mechanism of phase modulation

For non-stationary excitation, vibration energy or amplitude depends on the phase difference
between excitement and response. And the change of phase difference follows the varied
excitement frequency. This makes the basis of phase modulation method.

3.1. Phase history for constantly increased excitement frequency

In the case of monotonically increased frequency, the vibration amplitude is increased before
the passage of the resonance, or the phase difference remains in ‘amplitude increased phase’.
During this period, the phase difference goes from p=2 to �p=2 and approaches �p=2 near
resonant frequency. After the passage of resonance, the phase difference further decreases and
transits into [�3p=2, �p=2] via �p=2. Along with the increased excitement frequency the phase
difference alternates between ‘amplitude increased phase’ and ‘amplitude decreased phase’; and so
does the amplitude.

3.2. Phase change for ‘to and fro’ excitement frequency

The phase modulation is carried out before the passage of resonance. To modulate the phase
difference, the excitement frequency is not monotonically increased, but decreased at an adequate
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magnitude called ‘retreating point’. Consequently, the phase difference will stop decreasing
toward �p=2, but increases toward p=2 and finally transits to [p=2, 3p=2] via p=2, which is an
‘amplitude decreased phase’ in the sense of modulo 2p. The excitement frequency if kept
decreased, the phase difference will also alternate between ‘amplitude decreased phase’ and
‘amplitude increased phase’; when it enters the first amplitude decreased one we say the phase has
been modulated. After the phase is modulated, the excitement frequency is increased again at an
adequate moment called ‘advance point’. At this time, the phase will remain in the amplitude
decreased one for a while and then transit to amplitude increased one. Correspondingly, the
vibration amplitude will firstly decrease and then increase via its minimum. If the phase is
adequately modulated, the minimum amplitude will be smaller than the amplitude of un-
modulated case at the same frequency. Following the increased frequency, the vibration
amplitude approaches its maximum at resonance. In summary, the vibration amplitude goes an
increase–decrease procedure during phase modulation; and when the excitement frequency is
increased again, the amplitude still keeps decreasing until it approaches to its minimum. After the
excitement frequency completes a decrease–increase cycle the vibration amplitude has been
reduced. And the amplitude at resonance correspondingly is reduced.

3.3. Example 1

Here, we numerically demonstrate the process of phase modulation by integrating Eq. (4). For
the following parameters and initial conditions:

d ¼ 0:01; Z ¼ 1;
m

mþM
¼ 0:15;

xjt¼0 ¼ 0; x0jt¼0 ¼ 0; y
��
t¼0 ¼ 0; y0

��
t¼0 ¼ 0; jðtÞ

��
t¼0 ¼ 0; j0ðtÞ

��
t¼0 ¼ 0:

At first the angular velocity of the rotor j0ðtÞ is increased from 0 to 0.96 with acceleration
j00ðtÞ ¼ 0:01, and then it is decreased to 0.89 with rate j00ðtÞ ¼ 0:001. Finally, it is increased again
with acceleration j00ðtÞ ¼ 0:01 to pass through the resonance. The numerical results of above
procedures are shown in Fig. 3.
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Fig. 3. (A) Sine of the phase difference b� and (B) vibration amplitude for the ‘to and fro’ frequency.
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In Fig. 3(A), the vertical axis gives the sine of the phase difference, and the horizontal axis
is the angular velocity of the rotor j0ðtÞ. Curve segment ab corresponds to the angular
velocity being increased from 0.89 to 0.96 and bcd shows the phase modulation process,
that is, the angular velocity is decreased from 0.96 to 0.89. Along with decreased angular
velocity, the phase difference changes from 0.86 (at j0ðtÞ ¼ 0:96) to 2.58 (at j0ðtÞ ¼ 0:89),
via p=2; while it is 1.03 when the angular velocity is increased to the same magnitude
j0ðtÞ ¼ 0:89.
Fig. 3(B) shows the corresponding vibration amplitude. At the beginning of phase modulation,

the vibration amplitude, shown as bc, keeps increasing until it approaches its peak at the phase of
about p=2, and then begins to decrease. When the angular velocity is increased again, the
amplitude decreases for a while shown as de and then increases. Comparing to the case of
monotonically increased angular velocity shown as dashed line, the maximum amplitude is
reduced.
3.4. Example 2

This method can be generalized to vibration system subjected to various forcing functions other
than inertia force, the following example is a damped spring-mass oscillator subjected to pulse
excitement for passing through its resonance

x̄00 þ 2dx̄0 þ x̄ ¼ F 0:5þ 0:5 sign½coscðtÞ�ð Þ, (9)

where sign is sign function: it takes �1 if coscðtÞo0, otherwise takes 1. Let d ¼ 0:0024, c00ðtÞ ¼
0:0055 and F ¼ 0:2� 62=ðx̄� 6Þ2. To modulate the phase, when the pulse rate, namely, c0ðtÞ is
increased from 0 to 0.93 ðt ¼ 169Þ, it is decreased to 0.88 ðt ¼ 225Þ with constant rate
c00ðtÞ ¼ �0:00092; and then it is increased again with rate c00ðtÞ ¼ 0:0055 to pass through the
resonance. Fig. 4(A) shows the vibration displacement with constantly increasing pulse-rate and
(B) the vibration displacement in phase modulation case.
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Remarks.
1.
 For one degree of freedom oscillator, the vibrating displacement and velocity can be formally
expressed as x̄ ¼

ffiffiffiffiffiffiffi
2V
p

cos W and x̄0 ¼
ffiffiffiffiffiffiffi
2V
p

sinW, where V ¼ 1
2
ðx̄02 þ x̄2Þ is the vibration energy.

Therefore, the vibration amplitude can be taken as
ffiffiffiffiffiffiffi
2V
p

.

2.
 At the moment of alternating acceleration, the continuity of variables (x̄; x̄0; c and c0) should be

kept, that is, the end states of last procedure are taken as the initial conditions of the next one.
4. An empirical way for phase modulation

The essentials of phase modulation are to choose ‘retreating point’, ‘advancing point’ and the
decrease rate of the excitement frequency. For a constant increase rate of excitement frequency
Ac ¼ c00ðtÞ, the strategies for determining these parameters are discussed.

4.1. An empirical way of phase modulation

The above example and discussion show that the phase difference can be modulated by
decreasing the excitement frequency for a period. Here, trial and error was used for finding
adequate decrease rate, ‘retreating point’ and ‘advancing point’.

4.1.1. The decrease rate of frequency for phase modulation Ad

To determine the decrease rate, the first issue is the peak vibration amplitude during the procedure
of phase modulation. It should be controlled not to exceed the amplitude at resonance. This peak
depends on both the decrease rate and the ‘retreating point’: for a given retreating point, the larger the
decrease rate, the smaller the peak is; while for a given decrease rate, the peak will get bigger and bigger
along with the ‘retreating point’ approaching to resonant frequency. To ensure this peak is smaller
than amplitude at resonance, adequate decrease rate and ‘retreating point’ are required. Another
consideration is to prolong the process of amplitude being reduced but not to decrease the excitement
frequency too much during phase modulation. This requires a relatively small decrease rate.
The vibration amplitude at resonance depends on the increasing rate of excitement frequency:

the larger the increasing rate, the smaller the maximum amplitude is. Taking into account these
factors, we suggested that the decrease rate is proportional to the increase rate of the excitement
frequency Ac

Ad ¼ ��Ac, (10)

where � is a constant between 0.1 and 0.2.

4.1.2. Retreating point Fr

Once the decrease rate is determined, retreating point can be chosen by trial and error in the
following procedure:
1.
 Finding the resonant amplitude am in the case of constantly increased excitement frequency Ac.

2.
 Choosing a retreating point, once the excitement frequency is increased to this point with the

rate Ac, immediately decrease the excitement frequency with the rate determined by Eq. (10).
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3.
 Finding the peak amplitude of above procedure and comparing it to the maximum amplitude
am, if the former is less than the latter about 20%, then this ‘retreating point’ is taken as the
expected one. Otherwise, adjust the retreating point and repeat procedure 2 and 3 until
adequate retreating point in found.

For the increasing rate Ac ranged from 0.005 to 0.02, and damping coefficient d
ranged from 0.001 to 0.02 we suggest the following analytical approximation for ‘retreating
point’:

f r ¼ 0:98 on � 3 Ac � 0:00005=Ac þ 0:5d. (11)

It was obtained by means of linear fitting, where on is the nth natural frequencies of vibration
system.

4.1.3. The advancing point Fa

During the phase modulation, namely, the process of decreasing excitement frequency, the
vibration amplitude will first increases and then decrease. The ‘advancing point’, at where the
excitement frequency is increased again, locates at the decrease period of amplitude. After testing
different ‘advancing points’, one of them will be chosen as ‘advancing point’, if it produces the
smallest resonant amplitude when the excitement frequency is increased again. Here, we gave an
approximate way of determining the advancing point as

f a ¼ f r=1:028� 2:6Ac þ 0:000008=d (12)

4.2. Phase modulation for run-down case

In the case of run-down, there is also peak amplitude at the passage of resonance. The
maximum amplitude can be reduced by phase modulation in the same mechanism as run-up case.
The process is similar to the run-up case but in the symmetric way. The ‘retreating’ and
‘advancing’ points are, respectively, given by

f r ¼ 1:04on þ 3Ac þ 0:00005=Ac � 0:5d, (13)

f a ¼ 1:01f r þ 2:6Ac þ 0:000008=d. (14)

4.3. Possible implementation of the method in practice

For real implementation of this method, equipments for testing vibration displacements and
controlling the excitement frequency are required. Vibration displacements should be directly or
indirectly expressed as the function of excitement frequency, namely, an amplitude–frequency
history. In practice, we suggest the following procedures:
1.
 Determining the allowable increase rate of excitement frequency Ac according to driven system;
and testing the natural frequency of the oscillating equipment.
2.
 Using the rate Ac to run-up the equipment passing through its resonance, measuring the history
of vibration displacement and finding the maximum vibration amplitude. Usually, the
resonance takes place at a frequency that is greater than the natural one [4].
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3.
 Choosing the decrease rate according to Eq. (10) , and taking a preliminary retreating point
between 0:9on and 0:95on; if large amplitude is harmful to the equipment, a smaller retreating
point and a larger decrease rate should be taken for safety consideration.
4.
 Running down oscillating system to static with chosen decrease rate after running up to
retreating point, testing vibration displacement, getting amplitude–frequency history and
finding the maximum vibration amplitude during this process.
5.
 Comparing the two maximum vibration amplitudes recorded from steps 2 and 4; if the latter is
smaller than the former about 10–25%, then the decrease rate and retreating point are
adequate, otherwise adjust the retreating point and repeat step 4.
6.
 Making the envelop curve of the displacement history measured in step 4, and drawing a
horizontal line passing through the starting point of the envelop curve, an advancing point is
then taken as the intersection point of the line and envelop curve.
5. Numerical examples of phase modulation

5.1. Run-up case of two degrees of freedom with split resonance

For vibration system described by Eq. (4) with parameters d ¼ 0:01, Z ¼ 1:44, g1 ¼ g2 ¼ 50,
k ¼ 0:15 The system has split natural frequencies 1 and 1.2. For passing through the first
resonance, the frequency is decreased to f a ¼ 0:899 with rate Ad ¼ �0:001 after it is increased to
f r ¼ 0:95 with increasing rate Ac ¼ j00ðtÞ ¼ 0:01. And then it is increased again. When the
frequency approaches to the second retreating point f r2 ¼ 1:146, it is decreased to second
advancing point f a2 ¼ 1:0896 with rate Ad ¼ �0:001; and then is increased to work frequency.
The numerical results were shown in Fig. 5.

Remarks.
3.
 If two resonant frequencies are at a distance from each other, it may happen that the
modulated maximum amplitude is greater than the first peak amplitude without phase
modulation, since the second resonance amplitude is usually the bigger one. Therefore, only the
phase modulation is necessary before the passage of second resonance.
4.
 If the two resonant frequencies are close to each other, there is no space for second phase
modulation; however, the maximum amplitude can still be reduced by the first phase
modulation.

5.2. Run-down case of two degrees of freedom with split resonance

Take the same parameters as a run-up case, suppose the excitement frequency will run-down
from 1.8 to 0 with rate Ac ¼ j00ðtÞ ¼ �0:01. The passages of two resonances will also result in
amplitude peaks. To modulate the phase, the frequency is increased to ‘advancing point’ 1.317
with rate Ad ¼ 0:001 after it is decreased to ‘retreating point’ 1.278; and then it is decreased again.
These parameters are calculated by expressions (13) and (14), respectively. Here, we did not
modulate the phase before passing through the second resonance, since this peak is less than the
maximum amplitude after first phase modulation. The numerical results were shown in Fig. 6.



ARTICLE IN PRESS

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

y

x

x

x
-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

y

-2 -1 0 1 2

-2

-1

0

1

2

y

(A) (B)

(C)

Fig. 5. Vibration amplitudes during (A) second phase modulation, j0ðtÞ decreasing from 1.146 to 1.0896, (B) j0ðtÞ
increasing from 1.0896 to 1.4 of phase modulation case and (C) j0ðtÞ increasing from 1.0 to 1.4 without phase

modulation.

0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

2.5

)
(

21
y′

2
y2

+

�′(�)

Fig. 6. The vibration energy in y-direction of run-down case: dotted line shows constantly decreased frequency case;

solid line represents phase modulation case.
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6. Experimental confirmation

6.1. Overview

Experiments were conducted to verify that phase modulation is capable of reducing amplitude
at resonance in real hardware. We chose cantilever subjected pulses excitement to pass through
the resonance; it is relatively simple in implementing the experiments. The numerical result of the
model is given by the second example of Section 3.

6.2. Facility description

The experimental facility is based on a cantilever steel sheet clamped on a bench clamp, which
has a dimension 267� 23� 2mm3 shown as Fig. 7. A button magnet was stuck on the free end of
the sheet. A magnetic coil was used to exert magnetic force on the button magnet. Two strain
gauges connected in half-bridge were stuck on the clamped end for testing the flexure strain of the
sheet. The output voltage in Wheatstone bridge was recorded by computer through a USB A/C
converter. The excitement pulses signal with varied frequency was generated and sent out through
a USB port to the control end of a solid-state relay that supplies driven current with 15V for the
magnet coil. The natural frequency and damping coefficient of the sheet were tested by the
attenuation history of the free vibration; which are 13.2 and 0.2011, respectively.

6.3. Results

The exciting pulses were generated by sign function

I ¼ sign cos 2p
1

2
at2 þ f 0tþ j0

� �� �� �
.

Fig. 7. Experimental facility (1) steel sheet, (2) magnetic coil, (3) button magnet, (4) USB A/D converter, (5) solid state

relay, (6) amplifier circuit and (7) DC powers.
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Fig. 8. Voltage signal of strain gauges: (A) Constant pulse rate case and (B) phase modulation case.
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The comparison case was produced with parameters a ¼ 6, f 0 ¼ 0, j0 ¼ 0 and time t for 3 s to
pass through the resonance. The acceleration a ¼ 6 is equivalent to dimensionless acceleration
ā ¼ 0:0055. The measured strain was shown in Fig. 8(A).
For phase modulation, the excitement frequency was firstly increased from 0 to 12.3 by taking

a ¼ 6, f 0 ¼ 0, j0 ¼ 0 and running time t for 2.05 s; then it is decreased to 11.6 with taking a ¼ �1,
f 0 ¼ 12:3, j0 ¼ 12:6075 and running time t for 0.7 s. Finally, we took a ¼ 6, f 0 ¼ 11:6 and
j0 ¼ 20:9725, and run time t for 1 s to pass through resonance. The measured strain signal was
shown in Fig. 8(B). The maximum displacement is reduced by about 18%.
The first mode vibration was modeled by Eq. (9) in Section 3.4, the magnitude of magnetic force

exerted on the button magnet was approximated by F ¼ 0:2� 62=ðx̄� 6Þ2.
7. Conclusions

The validated cantilever model was used to show that it is possible to reduce lateral vibration at
resonance by phase modulation method. Preliminary experimental results support this conclusion.
While all the efforts described focused on simple models, the general technique should be applicable

to real vibrating systems only if these systems have the same phase–frequency characteristics as that of
systems described by Eq. (1) or Eq. (9). It should be possible to further reduce the vibration amplitude
and/or the total vibration energy by developing optimum decrease rate, retreating point and
advancing point for a given application. However, such an optimum phase modulation may require
high accurate control of the excitement frequency. Also, rapid changes in the acceleration will excite
unexpected vibration. However, if this technique can be implemented in real machinery, it will be
efficient since it does not require any auxiliary equipments but a programmed run-up procedure.
Acknowledgment

This work was partially supported by the National Natural Science Foundation of China under
Grant No. 10272008, and 10172011.



ARTICLE IN PRESS

S.-M. Wang et al. / Journal of Sound and Vibration 290 (2006) 410–424424
References

[1] F.K. Choy, J. Padovan, Nonlinear transient analysis of rotor-casing rub events, Journal of Sound and Vibration 113

(1987) 529–545.

[2] G.X. Li, M.P. Paidoussis, Impact phenomena of rotor-casing dynamical systems, Nonlinear Dynamics 5 (1994)

53–70.

[3] S. Yanabe, S. Kanneko, N. Shibata, Rotor vibration due to collision with annular guard during passage through

critical speed, Journal of Vibration and Acoustics 120 (1998) 549–550.

[4] R. Markert, M. Seidler, Analytically based estimation of the maximum amplitude during passage through

resonance, International Journal of Solids and Structures 38 (2001) 1975–1992.

[5] R.L. Fearn, K.T. Millsaps, Constant acceleration of an undamped simple vibrator vibrator through resonance,

Journal of the Royal Aeronautical Society (1967) 567–573.

[6] K.T. Millsaps, G.L. Reed, Reducing lateral vibrations of a rotor passing through critical speeds by acceleration

scheduling, Journal of Engineering for Gas Turbines and Power 120 (1998) 615–620.

[7] S.-M. Wang, Q.-S. Lu, E.H. Twizell, Reducing lateral vibrations of a rotor passing through critical speeds by phase

modulating, Journal of Engineering for Gas Turbines and Power 125 (2003) 766–771.


	Reducing the amplitude of vibration at resonances by �phase modulation
	Introduction
	The effect of the excitement phase on the vibration amplitude
	Numerical results
	Analytical result

	The mechanism of phase modulation
	Phase history for constantly increased excitement frequency
	Phase change for ’to and fro’ excitement frequency
	Example 1
	Example 2

	An empirical way for phase modulation
	An empirical way of phase modulation
	The decrease rate of frequency for phase modulation Ad
	Retreating point Fr
	The advancing point Fa

	Phase modulation for run-down case
	Possible implementation of the method in practice

	Numerical examples of phase modulation
	Run-up case of two degrees of freedom with split resonance
	Run-down case of two degrees of freedom with split resonance

	Experimental confirmation
	Overview
	Facility description
	Results

	Conclusions
	Acknowledgment
	References


